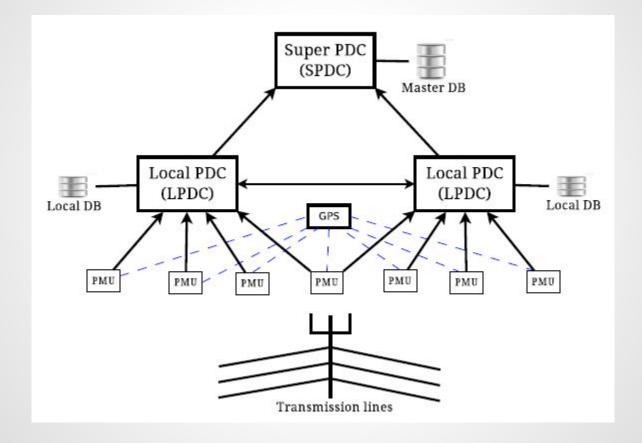
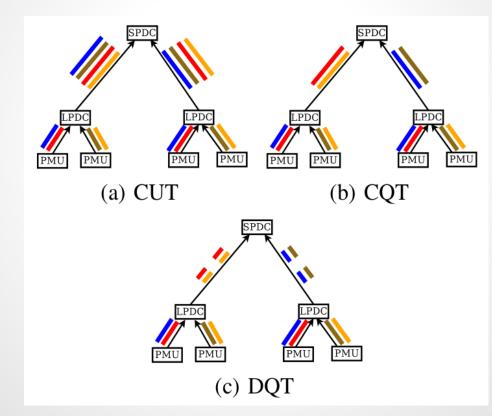

### Scaling up Capabilities of Smart Grid : Distributed Stream Processing


Swadesh Jain MTech 2

Department of Computer Science and Engineering Indian Institute of Technology, Bombay

### Scalability ?? "Motivation"




### Synchrophasor Network System

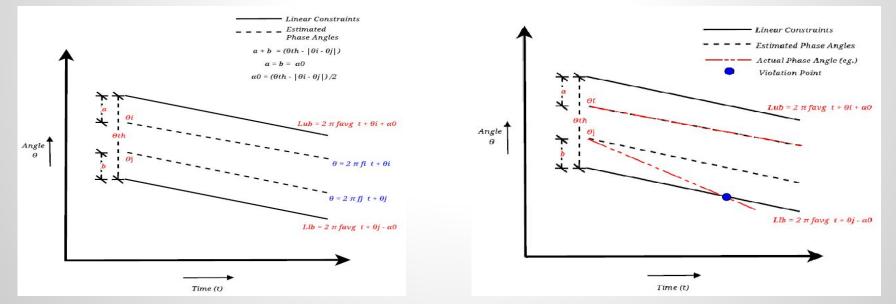


## **Efficient PMU Data Dissemination in Smart Grid: Algorithms**

- 1. CUT (Centralized Unqualified data Transmission)
- 2. CQT (Centralized Qualified data Transmission)
- 3. DQT (Distributed Qualified data Transmission)



## Modeling Local conditions for Distributed Query Execution Example:


- Global Constraint :
- Possible Local Constraints :
- Current Local violation :
- Not a global condition violation.. !!!!!
- Use learning and Recalculate local Constraints...
- New Local Constraints :

#### Angular stability monitoring :

Husband + Wife <= 100 Husband <= 50 & Wife <= 50 Husband = 30 & Wife = 60

| Angle1 - Angle2 | <= Threshold

Husband <= 35 & Wife <= 65



## When use of DQT/CQT will give benefit ??

• Assume A, B, C and D are 4 different applications with following specification.

| Application           | Α   | В  | С   | D   |
|-----------------------|-----|----|-----|-----|
| Туре                  | RT  | RT | NRT | NRT |
| DQT/CQT<br>Applicable | Yes | No | Yes | No  |

- Assume all application require complete data from PMUs.
  - #dataitem(A) = #dataitem(B) = #dataitem(C) = #dataitem(D)
- We can have different cases on the bases of applications running at one PDC.
- Note : Applications written in one box running at same PDC.

# Continued..

| Case  | Bandwidth requirement in normal   | Bandwidth requirement while<br>using DQT                                                |
|-------|-----------------------------------|-----------------------------------------------------------------------------------------|
| AB CD | 1 RT b/w<br>1 NRT b/w             | 1 RT b/w (Because of B)<br>1 NRT b/w (Because of D)                                     |
| ABCD  | 2 RT b/w                          | 1 filtered RT b/w (Because of A)<br>1 RT b/w (Because of B)                             |
| AC BD | 2 RT b/w                          | 1 filtered RT b/w (Because of A)<br>1 RT b/w (Because of B)                             |
| ABCD  | 1 RT b/w<br>(done in many Papers) | 1 RT b/w                                                                                |
| AD BC | 2 RT b/w                          | 1 filtered RT b/w (Because of A)<br>1 NRT b/w (Because of D)<br>1 RT b/w (Because of B) |

# Continued..

- Assume A, B, C and D are 4 different applications with same specification but some difference.
  - o #dataitem(A) < #dataitem(D)</pre>
  - o #dataitem(A) < #dataitem(B)</p>

| Case | Bandwidth requirement in normal | Bandwidth requirement while<br>using CQT |
|------|---------------------------------|------------------------------------------|
| AD   | 1 RT b/w<br>1 NRT b/w           | 1 reduced RT b/w<br>1 NRT b/w            |
| AD   | 1 RT b/w                        | 1 reduced RT b/w<br>1 reduced NRT b/w    |
| AB   | 2 RT b/w                        | 1 reduced RT b/w<br>1 RT b/w             |
| AB   | 1 RT b/w                        | 1 RT b/w                                 |

#### **Extension for the work (Projects)**

- 1. Apply CQT / DQT technique on State estimation application and get results of accuracy and bandwidth reduction.
- 2. Choose different applications, like A,B,C,D in example, and implement it on iPDC. Show results to justify the analogy.
- 3. "Different problems in the smart grid, e.g. out-of step, transient stability etc., can be detected using ML algorithms and pattern recognition."

#### OR

" State of the smart grid can be find out equivalent to state estimation application by applying ML and pattern recognition algorithms on PMU data."

Prove or disprove the hypothesis.